Berechne die
Integrale der folgenden Funktionen im angegebenen Interval
a) f(x) = 2x
[1, 3 ]
3∫1
(2x)
=
3∫1
(2/2x²) = 3² – 1² = 8
b)
f(x) = x/2 + 1 [-2, 2]
2∫-2
(x/2
+ 1) =
2∫-2
(x²/4
+ x) = (4/4 + 2) – (4/4 – 2) = 1 +2 – 1 + 2 = 4
d)
f(x) = x² [1,3]
3∫1
(
x2
)
=
3∫1
(x³/3)
= 27/3 – 1/3 = 26/3
e)
f(x) = x²/4 + 2 [0, 4]
4∫0
(
x³/4 * 3
+ 2x) = 64/12 + 8 = 64/12 + 96/12 = 160/12 = 13,33
j)
f(x) = x³/4
- 3x²/2 + 7x/2
[ 0,3 ]
3∫0
(
x³/4
- 3x²/2 + 7x/2
) =
3∫0
(
x4/4*4
- 3x³/2*3 + 7x²/2*2
) = 81/16 – 81/6 + 63/4 = 243/48 - 648/48 + 756/48 = 351/48 =
117/16 ~ 7,31
2.) Berechne
den Inhalt der Fläche zwischen Kurve und x-Achse:
d) f(x)
= x³ - 6x² + 9x
x(x²
- 6x + 9)
x
= 0
x²
- 6x + 9 = 0
kl. Lösungsformel:
6/2 +- √(-6/2)²
– 9 => 3
Nullstellen: 0,3
3∫0
(x³
- 6x² + 9x)
3∫0
(x4/4
– 6x3/3
+ 9x²/2) = 81/4 – 162/3 + 81/2 = 243/12 - 648/12 + 486/12 =
81/12 ~6,75
f)
f(x)
= x³ - 8x² + 15x
x³
- 8x² + 15x
x
(x² -8x +15)
x
= 0
kl
Lösungsformel
8/2
+- √(-8/2)²
– 15
4
+- 1 = > 5, 3
x1
= 0, x2 = 5, x3 = 3,
3∫0
(x³
- 8x² + 15x
) =
3∫0
(x4/4
– 8x3/3
+ 15x²/2)
=
81/4
– 216/3 + 135/2 = 243/12 – 864/12 + 810/12 = 189/12
5∫3
(x³
- 8x² + 15x
) =
3∫0
(x4/4
– 8x3/3
+ 15x²/2)
=
625/4
– 1000/3 + 375/2 – (81/4 – 216/3 + 135/2) =
1875/12
- 4000/12 + 2250/12 - 243/12 + 864/12 - 810/12 = |-64/12 | =
64/12
A = 189/12
+ 64/12 = 253/12 ~ 21,08
g)
f(x) = x³/3 - 3x
x(x²/3-3)
x
= 0
x²/3
= 3
x²
= 9 / √
x
= +- 3 x1= 0, x2= 3, x3 = -3
0∫-3
(x³/3
- 3x )
0∫-3
(x4/3*4
– 3x²/2 ) =
-81/12
+ 27/2 = 81/12
3∫0
(x³/3
- 3x )
3∫0
(x4/3*4
– 3x²/2 ) = 81/12 - 27/2 = 81/12 - 162/12 = | - 81/12 | = 81/12
A
= 81/12 + 81/12 = 162/12 = 13,5
h)
f (x) = x4
- 5x² + 4
u
= x² u² +5u + 4
5/2
+- √(5/2)²
– 4
2,5
+- 1,5
u
= 4, 1
=>
4 => +- 2
=>
1 => +- 1
-1∫-2
(x4
- 5x² + 4)
-1∫-2
(x5/5
– 5x³/3 + 4x)
-1/5
+ 5/3 – 4 - (-32/5 + 40/3 – 8) = -3/15 + 25/15 - 60/15 + 96/15 -
200/15 + 120/15
=
| -22/15 |= 22/15
1∫-1
(x4
- 5x² + 4) =
1∫-1
(x5/5
– 5x³/3 + 4x) =
1/5
- 5/3 + 4 - (-1/5 + 5/3 – 4 ) = 3/15 - 25/15 + 60/15 + 3/15 - 25/15
+ 60/15 = 76/15
2∫1
(x4
- 5x² + 4) =
2∫1
(x5/5
– 5x³/3 + 4x) =
32/5
- 40/3 + 8 - 1/5 - 5/3 + 4 =
96/15
- 200/15 + 120/15 - 3/15 + 25/15 – 60/15 = -22/15 = | -22/15 |
A
= 22/15
+ 76/15 + 22/15 = 120/15 = 8
3.
Berechne
den Inhalt der Fläche zwischen den beiden Kurven:
a) f(x)
= x², g(x) = x + 6
x² = x + 6
x² – x – 6 = 0
½
+- √(-1/2)²
+ 6
0,5 +- 2,5
=> x1 = 3, x2 = -2
3∫0
(x²
– x – 6 ) = x³/3
– x²/2 – 6x =
27/3
– 9/2 – 18 + 8/3 + 4/2 – 12 =
35/3
– 5/2 – 30
70/6
– 15/6 – 180/6 = |-125/6| = 20,83
b)
f(x) = 4x - x², g(x) = x
4x –
x² = x
4x –
x² – x = 0
3x –
x² = 0
x * (3 –
x)
=> x1
= 0, x2 = 3
3∫0
(3x – x²) =
3∫0
3x²/2 – x³/3 =
27/2 -27/3 = 81/6 – 54/6
= 27/6 = 4,5
c) f(x)
= x², g(x) = 4x - x²
x² = 4x – x²
4x – 2x² = 0
x( 4 – 2x) = 0
=> x1 = 0, x2
= 4 -2x = 2
3∫0
(4x
– 2x²) = 2∫0
(4x²/2
– 2x³/3) = 16/2 - 16/3 = 48/6 – 32/6 = 16/6 = 2,67
d) f(x)
= x², g(x) = 5 – x²/4
x2
= 5 – x2/4
4x² / 4 = 5 –
x²/4 / + x²/4
5x² / 4 = 5 /
*4
5x² = 20 /:5
x² = 4 / √
x = +- 2
²∫-2
(5x²/4
– 5) =
²∫-2
(5x³/12
– 5x) =
40/12
– 10 - (- 40/12 + 10) =
40/12
– 10 + 40/12 - 10 =
40/12
– 120/12 + 40/12 – 120/12 = -160/12 = | -160/12 | = 13.33